Τρίτη, 13 Ιουνίου 2017

Μια άποψη για το ερώτημα με αιτιολόγηση (Α2) στο Α Θέμα των εξετάσεων.


Στο τελευταίο διαγώνισμα που πρότεινα και παρασυρόμενος από τις φήμες που κυκλοφορούσαν για Σ - Λ με αιτιολόγηση στις πανελλήνιες εξετάσεις 2017, αποφάσισα να βάλω για την εμπειρία (και για εμένα που πρώτη φορά το έκανα, αλλά και για τους μαθητές μου που δεν το είχαν συνηθίσει), ερώτημα με αιτιολόγηση. Οποιαδήποτε προσπάθεια να βάλω Σ-Λ μου δημιουργούσε σοβαρά προβλήματα, κυρίως όταν έπαιρνα τη θέση του μαθητή και προσπαθούσα να απαντήσω. 

Επεξεργάστηκα πολλά Σ-Λ από αυτά που είχαν πέσει προηγούμενες χρονιές. Μέσα σε αυτά και το κλασικό: "Κάθε συνάρτηση  f που είναι συνεχής σε ένα σημείο x0, τότε είναι και παραγωγίσιμη σε αυτό", αλλά το απέρριψα πολύ γρήγορα. 
Και αυτό γιατί θεώρησα πως ακόμη και αν κάποιος μαθητής μου αιτιολογούσε την απάντησή του λέγοντας "αφού το αντίστροφο του θεωρήματος, όπως λέει το βιβλίο, δεν ισχύει είναι Λάθος" θα έπρεπε να το δεχθώ ως απάντηση. Οι μαθητές δεν είχαν προηγούμενη εμπειρία από τέτοιου είδους θέματα και ήταν για μένα κάτι ανεξερεύνητο το πως μπορεί να απαντούσαν.

Έτσι, έχοντας στο μυαλό μου την σχετική εμπειρία που έχουμε από τη φυσική και τα πολλαπλής επιλογής ερωτήματα του Β Θέματος που είναι με αιτιολόγηση, αποφάσισα να βάλω ένα πολλαπλής επιλογής που να είναι με τη μορφή άσκησης, να εξετάζει θεωρία και να θέλει κάποιου είδους κριτική ικανότητα από τον μαθητή. Εκεί σίγουρα δε θα υπήρχαν παρερμηνείες.



Δεν ξέρω αν πέτυχα ή όχι κάτι.... Ξέρω όμως ότι το πρώτο πράγμα που έκανα όταν κατασκεύαζα το διαγώνισμα ήταν να μπω στη θέση των μαθητών μου.

ΥΓ1.Καλή δύναμη στους βαθμολογητές και στο δύσκολο έργο τους!
ΥΓ2. Δεν υπονοώ τίποτα με την ανάρτηση μου αυτή, ούτε το κάνω για λόγους αυτοπροβολής (θα ήμουν γραφικός αν πίστευα κάτι τέτοιο). Το καταθέτω ως εμπειρία.
Related Posts Plugin for WordPress, Blogger...